
14	 August 2019	 Published by the IEEE Computer Society � 2469-7087/19/$33.00 © 2019 IEEE
82 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

SECTION TITLECYBERTRUST

Internet of Things (IoT) devices and services are now in-
tegral to most daily activities. However, the IoT brings
not only added convenience but, by connecting more
and more objects to the Internet, new security threats.1

Many applications in IoT ecosystems, from smart homes
to customized healthcare, contain sensitive personal in-
formation that can become the targets of network attacks.

Unfortunately, ensuring the security of IoT objects
is not straightforward for three major reasons. First, the
IoT’s heterogeneous nature makes it vulnerable to many
kinds of attacks. Second, heavyweight protection mecha-
nisms are infeasible for resource-constrained IoT devices.
Third, many IoT objects are deployed only once and there-
after are rarely maintained or updated.

PENETRATION TESTING
Due to these challenges, penetration testing (PT), which

employs o� ensive attack techniques
to discover vulnerabilities, is often
used to complement defensive se-
curity methods before IoT objects
are deployed. Because malicious at-
tacks need only a single exploit to be
successful, improving PT coverage
is crucial. To enhance manual PT,
security researchers use automated
tools to carry out three types of spe-
cialized PT: interface testing, trans-

portation testing, and system testing.
Interface testing targets interfaces that interact with

external users or devices. Major vulnerabilities can exist
in an application if its input validation mechanisms are
not in e� ect. In the Open Web Application Security Proj-
ect (OWASP) tester guidelines for IoT applications (www
.owasp.org/index.php/IoT_Testing_Guides), the categories
“insecure web interface” and “insecure network services,”
among others, would be addressed by interface testing.

Transportation testing focuses on misuse issues and
design � aws in communication protocols and weak cryp-
tographic schemes. In the OWASP guidelines, “insu� -
cient authentication/authorization,” “lack of transport
encryption/integrity veri� cation,” and “privacy con-
cerns” fall into this type of testing.

System testing examines � rmware, OSs, and system ser-
vices for implementation � aws, insecure system settings,

Penetration Testing
in the IoT Age
Chung-Kuan Chen, Zhi-Kai Zhang, Shan-Hsin Lee, and Shiuhpyng Shieh,
National Chiao Tung University

Internet of Things (IoT) objects offer new

services but also pose new security threats.

Due to the heterogeneity, large number, and

resource constraints of these objects, new

penetration testing tools and techniques are

needed to complement defensive mechanisms.

r4cyb.indd 82 4/16/18 10:43 AM

www.computer.org/computingedge� 15
A P R I L 2 0 1 8 83

EDITOR EDITOR NAME
A� liation;

EDITOR JEFFREY VOAS
NIST; j.voas@ieee.org

and other known vulnerabilities. In
the OWASP guidelines, “insu� cient
security con� gurability” and “inse-
cure software/� rmware” are relevant
for system testing.

To cope with the heterogeneity and
large quantity of IoT objects, we pro-
pose modularization of test modules
to scale up all three types of testing.
At the same time, due to IoT devices’
resource limitations, intelligent ap-
proaches are desirable for generating
test plans based on available test mod-
ules to reduce wasted resources and
redundant e� ort while extending test
coverage.

INTERFACE TESTING
Many user-facing IoT objects have
web-based interfaces, and these can
have various vulnerabilities. Among
the most common is input validation
failure. Unlike traditional web inter-
faces, which are linked to operations
closely coupled with data manipula-
tion, IoT object interfaces can also be
linked to code-oriented operations
such as controlling system programs.
Code-oriented attacks such as com-
mand injection and code injection
could be even more severe than data-
oriented attacks. Improving input
validation testing is thus critical for
the IoT. Although testing web-based
interfaces is our focus, the same mod-
ularization and intelligence mecha-
nisms described below can be applied
to other types of IoT applications.

Modularized design
Testers employ various techniques for
di� erent input validation vulnerabili-
ties. However, these methods are con-
ceptually similar in that they all crawl
to the entry points and submit the test
payload. Modularizing interface test-
ing would make it easier to create test-
ing tools for speci� c vulnerabilities
and install them on demand. More-
over, algorithms could be developed in

a more systematic way—for example,
to implement adaptive, prioritized, or
automutation test strategies.

Intelligent payload mutation
Because IoT objects can lack com-
prehensive input validation mecha-
nisms, extending the coverage of test
payloads is desirable. A widely used
method, fuzz testing, employs ran-
domly generated payloads, but this is
ine� cient due to resources wasted on
meaningless inputs. An alternative is
to exhaustively or randomly generate
syntax-correct inputs. This method
provides better test coverage but is still
inefficient, as the space of syntax-
correct inputs is usually large.

Intelligently mutating known pay-
loads is a compromise between man-
ual testing and exhaustive/random
testing. Combining existing evasion
techniques provides greater ability to
circumvent validation mechanisms.
In this case, con� icting or overlapping
techniques should be manipulated
carefully to prune unnecessary test
cases.2 On the other hand, converting
payloads to syntactically or seman-
tically equivalent payloads is worthy
of further investigation. Syntactic
mutation generates payloads with
slight changes at the syntax level. For
example, SQL code “‘or 1 = 1” can
be mutated to “‘|| 1 = 1”. Semantic
mutation converts the whole payload
to functional equivalent ones. For in-
stance, “id = 1 or 1” is semantically
equivalent to “id = id xor 0”.

Intelligent entry-point crawling
Entry-point discovery in an IoT

envi ronment with numerous net-
work services is difficult and time-
consuming. Because service entry
points can be dynamically generated,
the links between them can be com-
plex, and loops might be produced
across IoT objects. In addition, a dis-
patcher might be built into an IoT
application to manage entry points.
As the dispatcher can be in either a
centralized or distributed structure, a
crawler should be able to discover as
many entry points as possible in both
types of structures to locate more test
targets. A proof-of-concept vulnerabil-
ity scanner that does this, VulScan,2

has been developed to complement
manual PT.

TRANSPORTATION TESTING
Transportation testing is performed
both on the network infrastructure
interconnecting IoT objects as well as
the associated cryptographic schemes
and communication protocols used to
protect messages.

New network infrastructures
Messages between IoT objects traverse
heterogeneous networks such as TCP/
IP, Zigbee, and 6LoWPAN. To allow
more e� cient object communica-
tion, new infrastructures such as FIA
(www.nets-� a.net), HUB4NGI (www
.hub4ngi.eu), and PNS3 have been pro-
posed. New PT tools are needed to test
these infrastructures, the protocols,
and the gateways or converters be-
tween the infrastructures and proto-
cols. Because network heterogeneity
is a key issue in IoT communication,
transportation testing should be mod-
ularized to provide better � exibility.

Modularizing interface testing would make
it easier to create testing tools for specifi c
vulnerabilities and install them on demand.

r4cyb.indd 83 4/16/18 10:43 AM

82 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

SECTION TITLECYBERTRUST

Internet of Things (IoT) devices and services are now in-
tegral to most daily activities. However, the IoT brings
not only added convenience but, by connecting more
and more objects to the Internet, new security threats.1

Many applications in IoT ecosystems, from smart homes
to customized healthcare, contain sensitive personal in-
formation that can become the targets of network attacks.

Unfortunately, ensuring the security of IoT objects
is not straightforward for three major reasons. First, the
IoT’s heterogeneous nature makes it vulnerable to many
kinds of attacks. Second, heavyweight protection mecha-
nisms are infeasible for resource-constrained IoT devices.
Third, many IoT objects are deployed only once and there-
after are rarely maintained or updated.

PENETRATION TESTING
Due to these challenges, penetration testing (PT), which

employs o� ensive attack techniques
to discover vulnerabilities, is often
used to complement defensive se-
curity methods before IoT objects
are deployed. Because malicious at-
tacks need only a single exploit to be
successful, improving PT coverage
is crucial. To enhance manual PT,
security researchers use automated
tools to carry out three types of spe-
cialized PT: interface testing, trans-

portation testing, and system testing.
Interface testing targets interfaces that interact with

external users or devices. Major vulnerabilities can exist
in an application if its input validation mechanisms are
not in e� ect. In the Open Web Application Security Proj-
ect (OWASP) tester guidelines for IoT applications (www
.owasp.org/index.php/IoT_Testing_Guides), the categories
“insecure web interface” and “insecure network services,”
among others, would be addressed by interface testing.

Transportation testing focuses on misuse issues and
design � aws in communication protocols and weak cryp-
tographic schemes. In the OWASP guidelines, “insu� -
cient authentication/authorization,” “lack of transport
encryption/integrity veri� cation,” and “privacy con-
cerns” fall into this type of testing.

System testing examines � rmware, OSs, and system ser-
vices for implementation � aws, insecure system settings,

Penetration Testing
in the IoT Age
Chung-Kuan Chen, Zhi-Kai Zhang, Shan-Hsin Lee, and Shiuhpyng Shieh,
National Chiao Tung University

Internet of Things (IoT) objects offer new

services but also pose new security threats.

Due to the heterogeneity, large number, and

resource constraints of these objects, new

penetration testing tools and techniques are

needed to complement defensive mechanisms.

r4cyb.indd 82 4/16/18 10:43 AM

16	 ComputingEdge� August 2019
84 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

CYBERTRUST

Cryptographic issues
In general, the cryptographic algo-
rithms that protect network communi-
cation are believed to be secure due to
theoretical proofs. When vulnerabil-
ities are discovered, they’re generally
attributable to misuse, implementa-
tion failures, and bad protocol design.
However, resource-constrained IoT
objects can’t afford heavyweight cryp-
tographic mechanisms. Moreover,
messages between devices usually are
well formatted and lack entropy. The
combination of these factors could
make differential cryptanalysis or sta-
tistical attacks possible.

Trusted platform modules (TPMs)
enable new applications but also raise
new threats. For example, the ROCA
vulnerability4 is caused by a weak

prime-number generator in the RSA li-
brary within TPMs. This vulnerability
affects many vendors including Micro-
soft, Google, and HP. Another exam-
ple is KRACK attacks,5 which exploit
a flaw in Wi-Fi’s WPA2 encryption and
affects all major software platforms.
As cryptographic operations are rarely
computed in cleartext, developing PT
methods to discover such vulnerabili-
ties in the IoT is challenging.

SYSTEM TESTING
In contrast to interface testing, which
focuses on commonly used technol-
ogies such as web interfaces, propri-
etary programs are the main targets
of system testing. Without having
knowledge of such systems, testers of-
ten resort to black-box methods, such
as fuzz testing. Given the large number
of IoT objects to be tested, exhausting
all test cases is infeasible. It’s therefore
helpful generating test cases through
automatic reverse-engineering, what
is termed grey-box PT.

In conventional computing envi-
ronments the x86/x64 instruction-set
architecture (ISA) dominates, but
other ISAs such as ARM, MIPS, and
PPC are also used in the IoT. OSs vary
among IoT objects as well, with general-
purpose OSs such as Linux, Windows,
and Android often customized. The di-
versity of IoT objects makes automated
reverse-engineering challenging.

Encapsulation
To mitigate the impacts of system
diversity, encapsulation can enable
cross-platform analysis. Encapsulation
involves using an abstract language
such as LLVM (http://llvm.org) or VEX
(http://valgrind.org) to create an in-
termediate representation (IR) of dif-
ferent machine languages to emulate

ISAs. Hardware-assisted emulators
are used to test programs running on
specific ISAs, but software-based emu-
lators such as QEMU (www.qemu.org)
and Bochs (http://bochs.sourceforge
.net) can leverage multiple ISAs and
are more suitable for IoT objects.
Another method for building an IR
is symbolic execution, which trans-
lates a program to mathematical con-
straints and evaluates whether certain
properties can be satisfied. With these
constraints, developing an intelligent
PT method with a more formalized
foundation is possible.

Virtual machine introspection
While symbolic execution mostly deals
with per-process information, system-
wide runtime information is also im-
portant for PT. However, runtime anal-
ysis tools might not be available for IoT
objects. Due to resource constraints, ob-
ject diversity, and proprietary architec-
tures, developing debugging and anal-
ysis tools for different objects is usually

infeasible. An alternative approach is
virtual machine introspection (VMI),
which monitors VM execution in the
hypervisor outside the VM.6,7 Because
VMI doesn’t modify the guest OS, IoT
objects are easier to deploy. Through
VMI, the emulator’s out-of-box moni-
toring, memory forensics, and debug-
ging features can be developed more
easily to enable both manual and auto-
matic PT.

Intelligent grey-box testing
As the boundary of grey-box testing is
more obscure than white- and black-
box testing, a systematic division of
testing phases enables the develop-
ment of future testing techniques. In-
telligent grey-box PT can be divided
into four phases: vulnerability model
construction, execution path explora-
tion, vulnerability path searching, and
vulnerability path verification. To dis-
cover vulnerabilities, the model of ab-
normal behaviors is first constructed.
Next, control flows are analyzed to find
each execution path. The vulnerability
risk for each path is then estimated us-
ing information from the IR and VMI
to prioritize testing order. Once the
path with highest risk is identified, the
symbolic execution resolves inputs
to the path. During the final phase, if
the resolved input is available, a veri-
fier can monitor the program with the
input to check whether the vulnera-
bility model can be satisfied. Using
this systematic approach, intelligent
grey-box PT can discover system-level
vulnerabilities.

To cope with the heterogeneity,
large number, and resource
constraints of IoT objects, PT

tools and techniques should apply the
principles of modularization and in-
telligence. Modularization provides
the flexibility to test various targets,
and intelligence enlarges test coverage
and improves accuracy. In interface
testing, input validation mechanisms
should be tested using an intelli-
gent mutation engine and entry-point

To mitigate the impacts of system diversity,
encapsulation can enable cross-platform analysis.

r4cyb.indd 84 4/16/18 10:43 AM

www.computer.org/computingedge� 17
 A P R I L 2 0 1 8 85

discovery automated. Transportation
testing must address the problem of
messages between IoT objects travers-
ing heterogeneous networks. To deal
with emerging IoT network infra-
structures, PT tools should be com-
patible with the overlay networks.
Cryptographic misuse issues and im-
plementation flaws must also be con-
sidered. In system testing, the chal-
lenge is IoT objects with various ISAs
and OSs. If encapsulation and related
translation modules are available,
cross-platform analysis becomes fea-
sible. VMI and symbolic execution can
be applied on top of encapsulation. In
this way, intelligent analysis methods
can be used to discover vulnerabilities
in variant platforms.

REFERENCES
1. Z.-K. Zhang et al., “IoT Security:

Ongoing Challenges and Research
Opportunities,” Proc. IEEE 7th Int’l
Conf. Service-Oriented Computing
and Applications (SOCA 14), 2014,
pp. 230–234.

2. H.-C. Huang et al., “Web Application

Security: Threats, Countermeasures,
and Pitfalls,” Computer, vol. 50, no. 6,
2017, pp. 81–85.

3. Z.-K. Zhang et al., “Identifying and
Authenticating IoT Objects in a Natu-
ral Context,” Computer, vol. 48, no. 8,
2015, pp. 81–83.

4. M. Nemec et al., “The Return of
Coppersmith’s Attack: Practical
Factorization of Widely Used RSA
Moduli,” Proc. 2017 ACM SIGSAC
Conf. Computer and Communications
Security (CCS 17), 2017, pp. 1631–1648.

5. M. Vanhoef and F. Piessens, “Key
Reinstallation Attacks: Forcing
Nonce Reuse in WPA2,” Proc. 2017
ACM SIGSAC Conf. Computer and
Communications Security (CCS 17),
2017, pp. 1313–1328.

6. K. Nance, M. Bishop, and B. Hay,
“Virtual Machine Introspection:
Observation or Interference?,” IEEE
Security & Privacy, vol. 6, no. 5, 2008,
pp. 32–37.

7. C.-W. Wang et al., “Cloudebug: A
Programmable Online Malware Test-
bed,” Computer, vol. 47, no. 7, 2014,
pp. 90–92.

CHUNG-KUAN CHEN is a PhD

candidate in the Department of

Computer Science at National Chiao

Tung University (NCTU). Contact him

at ckchen@cs.nctu.edu.tw.

ZHI-KAI ZHANG is a PhD candidate

in the Department of Computer

Science at NCTU. Contact him at

skyzhang.cs99g@g2.nctu.edu.tw.

SHAN-HSIN LEE is a PhD student

in the Department of Computer

Science at NCTU. Contact him at

shlee.cs06g@nctu.edu.tw.

SHIUHPYNG WINSTON SHIEH is a

university chair professor and past

chair of the Department of Computer

Science at NCTU. Contact him at

ssp@cs.nctu.edu.tw.

www.computer.org/subscribe

IEEE Security & Privacy magazine provides articles with IEEE Security & Privacy magazine provides articles with IEEE Security & Privacy
both a practical and research bent by the top thinkers in
the fi eld.

✔ Stay current on the latest security tools and theories
and gain invaluable practical and research knowledge,

✔ Learn more about the latest techniques and cutting-
edge technology, and

✔ Discover case studies, tutorials, columns, and
in-depth interviews and podcasts for the information
security industry.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

r4cyb.indd 85 4/16/18 10:43 AM

84 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

CYBERTRUST

Cryptographic issues
In general, the cryptographic algo-
rithms that protect network communi-
cation are believed to be secure due to
theoretical proofs. When vulnerabil-
ities are discovered, they’re generally
attributable to misuse, implementa-
tion failures, and bad protocol design.
However, resource-constrained IoT
objects can’t afford heavyweight cryp-
tographic mechanisms. Moreover,
messages between devices usually are
well formatted and lack entropy. The
combination of these factors could
make differential cryptanalysis or sta-
tistical attacks possible.

Trusted platform modules (TPMs)
enable new applications but also raise
new threats. For example, the ROCA
vulnerability4 is caused by a weak

prime-number generator in the RSA li-
brary within TPMs. This vulnerability
affects many vendors including Micro-
soft, Google, and HP. Another exam-
ple is KRACK attacks,5 which exploit
a flaw in Wi-Fi’s WPA2 encryption and
affects all major software platforms.
As cryptographic operations are rarely
computed in cleartext, developing PT
methods to discover such vulnerabili-
ties in the IoT is challenging.

SYSTEM TESTING
In contrast to interface testing, which
focuses on commonly used technol-
ogies such as web interfaces, propri-
etary programs are the main targets
of system testing. Without having
knowledge of such systems, testers of-
ten resort to black-box methods, such
as fuzz testing. Given the large number
of IoT objects to be tested, exhausting
all test cases is infeasible. It’s therefore
helpful generating test cases through
automatic reverse-engineering, what
is termed grey-box PT.

In conventional computing envi-
ronments the x86/x64 instruction-set
architecture (ISA) dominates, but
other ISAs such as ARM, MIPS, and
PPC are also used in the IoT. OSs vary
among IoT objects as well, with general-
purpose OSs such as Linux, Windows,
and Android often customized. The di-
versity of IoT objects makes automated
reverse-engineering challenging.

Encapsulation
To mitigate the impacts of system
diversity, encapsulation can enable
cross-platform analysis. Encapsulation
involves using an abstract language
such as LLVM (http://llvm.org) or VEX
(http://valgrind.org) to create an in-
termediate representation (IR) of dif-
ferent machine languages to emulate

ISAs. Hardware-assisted emulators
are used to test programs running on
specific ISAs, but software-based emu-
lators such as QEMU (www.qemu.org)
and Bochs (http://bochs.sourceforge
.net) can leverage multiple ISAs and
are more suitable for IoT objects.
Another method for building an IR
is symbolic execution, which trans-
lates a program to mathematical con-
straints and evaluates whether certain
properties can be satisfied. With these
constraints, developing an intelligent
PT method with a more formalized
foundation is possible.

Virtual machine introspection
While symbolic execution mostly deals
with per-process information, system-
wide runtime information is also im-
portant for PT. However, runtime anal-
ysis tools might not be available for IoT
objects. Due to resource constraints, ob-
ject diversity, and proprietary architec-
tures, developing debugging and anal-
ysis tools for different objects is usually

infeasible. An alternative approach is
virtual machine introspection (VMI),
which monitors VM execution in the
hypervisor outside the VM.6,7 Because
VMI doesn’t modify the guest OS, IoT
objects are easier to deploy. Through
VMI, the emulator’s out-of-box moni-
toring, memory forensics, and debug-
ging features can be developed more
easily to enable both manual and auto-
matic PT.

Intelligent grey-box testing
As the boundary of grey-box testing is
more obscure than white- and black-
box testing, a systematic division of
testing phases enables the develop-
ment of future testing techniques. In-
telligent grey-box PT can be divided
into four phases: vulnerability model
construction, execution path explora-
tion, vulnerability path searching, and
vulnerability path verification. To dis-
cover vulnerabilities, the model of ab-
normal behaviors is first constructed.
Next, control flows are analyzed to find
each execution path. The vulnerability
risk for each path is then estimated us-
ing information from the IR and VMI
to prioritize testing order. Once the
path with highest risk is identified, the
symbolic execution resolves inputs
to the path. During the final phase, if
the resolved input is available, a veri-
fier can monitor the program with the
input to check whether the vulnera-
bility model can be satisfied. Using
this systematic approach, intelligent
grey-box PT can discover system-level
vulnerabilities.

To cope with the heterogeneity,
large number, and resource
constraints of IoT objects, PT

tools and techniques should apply the
principles of modularization and in-
telligence. Modularization provides
the flexibility to test various targets,
and intelligence enlarges test coverage
and improves accuracy. In interface
testing, input validation mechanisms
should be tested using an intelli-
gent mutation engine and entry-point

To mitigate the impacts of system diversity,
encapsulation can enable cross-platform analysis.

r4cyb.indd 84 4/16/18 10:43 AM

This article originally appeared in
Computer, vol. 51, no. 4, 2018.

