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Internet of Things (IoT) devices and services are now in-
tegral to most daily activities. However, the IoT brings 
not only added convenience but, by connecting more 
and more objects to the Internet, new security threats.1

Many applications in IoT ecosystems, from smart homes 
to customized healthcare, contain sensitive personal in-
formation that can become the targets of network attacks. 

Unfortunately, ensuring the security of IoT objects 
is not straightforward for three major reasons. First, the 
IoT’s heterogeneous nature makes it vulnerable to many 
kinds of attacks. Second, heavyweight protection mecha-
nisms are infeasible for resource-constrained IoT devices. 
Third, many IoT objects are deployed only once and there-
after are rarely maintained or updated. 

PENETRATION TESTING
Due to these challenges, penetration testing (PT), which 

employs o� ensive attack techniques 
to discover vulnerabilities, is often 
used to complement defensive se-
curity methods before IoT objects 
are deployed. Because malicious at-
tacks need only a single exploit to be 
successful, improving PT coverage 
is crucial. To enhance manual PT, 
security researchers use automated 
tools to carry out three types of spe-
cialized PT: interface testing, trans-

portation testing, and system testing.
Interface testing targets interfaces that interact with 

external users or devices. Major vulnerabilities can exist 
in an application if its input validation mechanisms are 
not in e� ect. In the Open Web Application Security Proj-
ect (OWASP) tester guidelines for IoT applications (www
.owasp.org/index.php/IoT_Testing_Guides), the categories 
“insecure web interface” and “insecure network services,” 
among others, would be addressed by interface testing.

Transportation testing focuses on misuse issues and 
design � aws in communication protocols and weak cryp-
tographic schemes. In the OWASP guidelines, “insu�  -
cient authentication/authorization,” “lack of transport 
encryption/integrity veri� cation,” and “privacy con-
cerns” fall into this type of testing.

System testing examines � rmware, OSs, and system ser-
vices for implementation � aws, insecure system settings, 
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and other known vulnerabilities. In 
the OWASP guidelines, “insu�  cient 
security con� gurability” and “inse-
cure software/� rmware” are relevant 
for system testing.

To cope with the heterogeneity and 
large quantity of IoT objects, we pro-
pose modularization of test modules 
to scale up all three types of testing. 
At the same time, due to IoT devices’ 
resource limitations, intelligent ap-
proaches are desirable for generating 
test plans based on available test mod-
ules to reduce wasted resources and 
redundant e� ort while extending test 
coverage. 

INTERFACE TESTING
Many user-facing IoT objects have 
web-based interfaces, and these can 
have various vulnerabilities. Among 
the most common is input validation 
failure. Unlike traditional web inter-
faces, which are linked to operations 
closely coupled with data manipula-
tion, IoT object interfaces can also be 
linked to code-oriented operations 
such as controlling system programs. 
Code-oriented attacks such as com-
mand injection and code injection 
could be even more severe than data-
oriented attacks. Improving input 
validation testing is thus critical for 
the IoT. Although testing web-based 
interfaces is our focus, the same mod-
ularization and intelligence mecha-
nisms described below can be applied 
to other types of IoT applications. 

Modularized design
Testers employ various techniques for 
di� erent input validation vulnerabili-
ties. However, these methods are con-
ceptually similar in that they all crawl 
to the entry points and submit the test 
payload. Modularizing interface test-
ing would make it easier to create test-
ing tools for speci� c vulnerabilities 
and install them on demand. More-
over, algorithms could be developed in 

a more systematic way—for example, 
to implement adaptive, prioritized, or 
automutation test strategies.

Intelligent payload mutation
Because IoT objects can lack com-
prehensive input validation mecha-
nisms, extending the coverage of test 
payloads is desirable. A widely used 
method, fuzz testing, employs ran-
domly generated payloads, but this is 
ine�  cient due to resources wasted on 
meaningless inputs. An alternative is 
to exhaustively or randomly generate 
syntax-correct inputs. This method 
provides better test coverage but is still 
inefficient, as the space of syntax-
correct inputs is usually large.

Intelligently mutating known pay-
loads is a compromise between man-
ual testing and exhaustive/random 
testing. Combining existing evasion 
techniques provides greater ability to 
circumvent validation mechanisms. 
In this case, con� icting or overlapping 
techniques should be manipulated 
carefully to prune unnecessary test 
cases.2 On the other hand, converting 
payloads to syntactically or seman-
tically equivalent payloads is worthy 
of further investigation. Syntactic 
mutation generates payloads with 
slight changes at the syntax level. For 
example, SQL code “‘or 1 = 1” can 
be mutated to “‘|| 1 = 1”. Semantic 
mutation converts the whole payload 
to functional equivalent ones. For in-
stance, “id = 1 or 1” is semantically 
equivalent to “id = id xor 0”.

Intelligent entry-point crawling
Entry-point discovery in an IoT 

envi ronment with numerous net-
work services is difficult and time-
consuming. Because service entry 
points can be dynamically generated, 
the links between them can be com-
plex, and loops might be produced 
across IoT objects. In addition, a dis-
patcher might be built into an IoT 
application to manage entry points. 
As the dispatcher can be in either a 
centralized or distributed structure, a 
crawler should be able to discover as 
many entry points as possible in both 
types of structures to locate more test 
targets. A proof-of-concept vulnerabil-
ity scanner that does this, VulScan,2

has been developed to complement 
manual PT.

TRANSPORTATION TESTING
Transportation testing is performed 
both on the network infrastructure 
interconnecting IoT objects as well as 
the associated cryptographic schemes 
and communication protocols used to 
protect messages. 

New network infrastructures
Messages between IoT objects traverse 
heterogeneous networks such as TCP/
IP, Zigbee, and 6LoWPAN. To allow 
more e�  cient object communica-
tion, new infrastructures such as FIA 
(www.nets-� a.net), HUB4NGI (www
.hub4ngi.eu), and PNS3 have been pro-
posed. New PT tools are needed to test 
these infrastructures, the protocols, 
and the gateways or converters be-
tween the infrastructures and proto-
cols. Because network heterogeneity 
is a key issue in IoT communication, 
transportation testing should be mod-
ularized to provide better � exibility.

Modularizing interface testing would make 
it easier to create testing tools for specifi c 
vulnerabilities and install them on demand.
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Cryptographic issues
In general, the cryptographic algo-
rithms that protect network communi-
cation are believed to be secure due to 
theoretical proofs. When vulnerabil-
ities are discovered, they’re generally 
attributable to misuse, implementa-
tion failures, and bad protocol design. 
However, resource-constrained IoT 
objects can’t afford heavyweight cryp-
tographic mechanisms. Moreover, 
messages between devices usually are 
well formatted and lack entropy. The 
combination of these factors could 
make differential cryptanalysis or sta-
tistical attacks possible.

Trusted platform modules (TPMs) 
enable new applications but also raise 
new threats. For example, the ROCA 
vulnerability4 is caused by a weak 

prime-number generator in the RSA li-
brary within TPMs. This vulnerability 
affects many vendors including Micro-
soft, Google, and HP. Another exam-
ple is KRACK attacks,5 which exploit 
a flaw in Wi-Fi’s WPA2 encryption and 
affects all major software platforms. 
As cryptographic operations are rarely 
computed in cleartext, developing PT 
methods to discover such vulnerabili-
ties in the IoT is challenging.

SYSTEM TESTING
In contrast to interface testing, which 
focuses on commonly used technol-
ogies such as web interfaces, propri-
etary programs are the main targets 
of system testing. Without having 
knowledge of such systems, testers of-
ten resort to black-box methods, such 
as fuzz testing. Given the large number 
of IoT objects to be tested, exhausting 
all test cases is infeasible. It’s therefore 
helpful generating test cases through 
automatic reverse-engineering, what 
is termed grey-box PT.

In conventional computing envi-
ronments the x86/x64 instruction-set 
architecture (ISA) dominates, but 
other ISAs such as ARM, MIPS, and 
PPC are also used in the IoT. OSs vary 
among IoT objects as well, with general- 
purpose OSs such as Linux, Windows, 
and Android often customized. The di-
versity of IoT objects makes automated 
reverse-engineering challenging. 

Encapsulation
To mitigate the impacts of system 
diversity, encapsulation can enable 
cross-platform analysis. Encapsulation 
involves using an abstract language 
such as LLVM (http://llvm.org) or VEX 
(http://valgrind.org) to create an in-
termediate representation (IR) of dif-
ferent machine languages to emulate 

ISAs. Hardware-assisted emulators 
are used to test programs running on 
specific ISAs, but software-based emu-
lators such as QEMU (www.qemu.org) 
and Bochs (http://bochs.sourceforge 
.net) can leverage multiple ISAs and 
are more suitable for IoT objects. 
Another method for building an IR 
is symbolic execution, which trans-
lates a program to mathematical con-
straints and evaluates whether certain 
properties can be satisfied. With these 
constraints, developing an intelligent 
PT method with a more formalized 
foundation is possible.

Virtual machine introspection
While symbolic execution mostly deals 
with per-process information, system- 
wide runtime information is also im-
portant for PT. However, runtime anal-
ysis tools might not be available for IoT 
objects. Due to resource constraints, ob-
ject diversity, and proprietary architec-
tures, developing debugging and anal-
ysis tools for different objects is usually 

infeasible. An alternative approach is 
virtual machine introspection (VMI), 
which monitors VM execution in the 
hypervisor outside the VM.6,7  Because 
VMI doesn’t modify the guest OS, IoT 
objects are easier to deploy. Through 
VMI, the emulator’s out-of-box moni-
toring, memory forensics, and debug-
ging features can be developed more 
easily to enable both manual and auto-
matic PT.

Intelligent grey-box testing
As the boundary of grey-box testing is 
more obscure than white- and black-
box testing, a systematic division of 
testing phases enables the develop-
ment of future testing techniques. In-
telligent grey-box PT can be divided 
into four phases: vulnerability model 
construction, execution path explora-
tion, vulnerability path searching, and 
vulnerability path verification. To dis-
cover vulnerabilities, the model of ab-
normal behaviors is first constructed. 
Next, control flows are analyzed to find 
each execution path. The vulnerability 
risk for each path is then estimated us-
ing information from the IR and VMI 
to prioritize testing order. Once the 
path with highest risk is identified, the 
symbolic execution resolves inputs 
to the path. During the final phase, if 
the resolved input is available, a veri-
fier can monitor the program with the 
input to check whether the vulnera-
bility model can be satisfied. Using 
this systematic approach, intelligent 
grey-box PT can discover system-level 
vulnerabilities.

To cope with the heterogeneity, 
large number, and resource 
constraints of IoT objects, PT 

tools and techniques should apply the 
principles of modularization and in-
telligence. Modularization provides 
the flexibility to test various targets, 
and intelligence enlarges test coverage 
and improves accuracy. In interface 
testing, input validation mechanisms 
should be tested using an intelli-
gent mutation engine and entry-point 

To mitigate the impacts of system diversity, 
encapsulation can enable cross-platform analysis.
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discovery automated. Transportation 
testing must address the problem of 
messages between IoT objects travers-
ing heterogeneous networks. To deal 
with emerging IoT network infra-
structures, PT tools should be com-
patible with the overlay networks. 
Cryptographic misuse issues and im-
plementation flaws must also be con-
sidered. In system testing, the chal-
lenge is IoT objects with various ISAs 
and OSs. If encapsulation and related 
translation modules are available, 
cross-platform analysis becomes fea-
sible. VMI and symbolic execution can 
be applied on top of encapsulation. In 
this way, intelligent analysis methods 
can be used to discover vulnerabilities 
in variant platforms. 
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