Exploration of novel biomarkers for hypertensive disorders of pregnancy by comprehensive analysis of peptide fragments in blood: their potential and technologies supporting quantification
Abstract
Among the many complications associated with pregnancy, hypertensive disorders of pregnancy (HDP) constitute one of the most important. Since the pathophysiology of HDP is complex, new disease biomarkers (DBMs) are needed to serve as indicators of disease activity. However, in the current status of laboratory medicine, despite the fact that blood pressure measurement has been used for a long time, not many DBMs contribute adequately to the subsequent diagnosis and treatment. In this article, we discuss studies focusing on peptide fragments in blood identified by comprehensive quantitative methods, among the currently proposed DBM candidates. Furthermore, we describe the basic techniques of peptidomics, especially quantitative proteomics, and outline the current status and challenges of measuring peptides in blood as DBM for HDP.
Funding source: The Japan Society for the Promotion of Science
Award Identifier / Grant number: 25462575/16K11111/17K19734/17K19719/19K22681/18KK0256
Funding source: Japan Science and Technology Agency
Award Identifier / Grant number: AS2311641F/19-191030923
Funding source: The Ministry of Education, Culture, Sports, Science and Technology, Japan
Award Identifier / Grant number: “High-Tech Research Center” Project for Private Universities: matching fund subsidy
Funding source: The Japan Agency for Medical Research and Development
Award Identifier / Grant number: 17gk0110024h0001/17cm0106XXXh0001
Acknowledgments
We would like to thank all collaborators who contributed to the MS analysis and related studies.
-
Research funding: This work was supported in part by Grants-in Aid for Scientific Research Nos. 25462575/16K11111, for Challenging Research Nos. 17K19734/17K19719/19K22681, and for Fostering Joint International Research No. 18KK0256 from the Japan Society for the Promotion of Science (JSPS), grants Nos. 17gk0110024h0001/17cm0106XXXh0001 from the Japan Agency for Medical Research and Development (AMED), grants No. AS2311641F/19-191030923 from Japan Science and Technology Agency, and “High-Tech Research Center” Project for Private Universities: matching fund subsidy from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
-
Author contributions: Y.A., Y.M., and H.F. conceived, designed, and directed the study, provided financial supports, and wrote the article. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Informed consent: Not applicable.
-
Ethical approval: Not applicable.
References
1. Nelson-Piercy, C, de Swiet, M, Lewis, G. Medical deaths in pregnancy. Clin Med 2008;8:11–2. https://doi.org/10.7861/clinmedicine.8-1-11.Search in Google Scholar
2. de Swiet, M. Maternal mortality in the developed world: lessons from the UK confidential enquiry. Obstet Med 2008;1:7–10. https://doi.org/10.1258/om.2008.080020.Search in Google Scholar
3. von Dadelszen, P, Payne, B, Li, J, Ansermino, JM, Broughton Pipkin, F, Côté, AM, et al.. Prediction of adverse maternal outcomes in pre-eclampsia: development and validation of the fullPIERS model. Lancet 2011;377:219–27. https://doi.org/10.1016/s0140-6736(10)61351-7.Search in Google Scholar
4. Brown, MA, Magee, LA, Kenny, LC, Karumanchi, SA, McCarthy, FP, Saito, S, et al.. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 2018;72:24–43. https://doi.org/10.1161/hypertensionaha.117.10803.Search in Google Scholar PubMed
5. Sutton, ALM, Harper, LM, Tita, ATN. Hypertensive disorders in pregnancy. Obstet Gynecol Clin N Am 2018;45:333–47. https://doi.org/10.1016/j.ogc.2018.01.012.Search in Google Scholar PubMed
6. Haram, K, Svendsen, E, Abildgaard, U. The HELLP syndrome: clinical issues and management. A review. BMC Pregnancy Childbirth 2009;9:8. https://doi.org/10.1186/1471-2393-9-8.Search in Google Scholar PubMed PubMed Central
7. Wallace, K, Harris, S, Addison, A, Bean, C. HELLP syndrome: pathophysiology and current therapies. Curr Pharmaceut Biotechnol 2018;19:816–26. https://doi.org/10.2174/1389201019666180712115215.Search in Google Scholar PubMed
8. Araki, Y, Nonaka, D, Hamamura, K, Yanagida, M, Ishikawa, H, Banzai, M, et al.. Clinical peptidomic analysis by a one-step direct transfer technology: its potential utility for monitoring of pathophysiological status in female reproductive system disorders. J Obstet Gynaecol Res 2013;39:1440–8. https://doi.org/10.1111/jog.12140.Search in Google Scholar PubMed
9. Araki, Y, Yanagida, M. Hypertensive disorders of pregnancy: strategy to develop clinical peptide biomarkers for more accurate evaluation of the pathophysiological status of this syndrome. In: Makowski, GS, editor. Advances in clinical chemistry. London, UK: Elsevier; 2020, vol 94:1–30 pp.10.1016/bs.acc.2019.07.007Search in Google Scholar PubMed
10. Taylor, RN. Review: immunobiology of preeclampsia. Am J Reprod Immunol 1997;37:79–86. https://doi.org/10.1111/j.1600-0897.1997.tb00195.x.Search in Google Scholar PubMed
11. Salas, SP. What causes pre-eclampsia? Bailliere Best Pract Res Clin Obstet Gynaecol 1999;13:41–57. https://doi.org/10.1053/beog.1999.0005.Search in Google Scholar
12. Cetin, A. Eclampsia. In: advanced therapy. In: Mohler, ER III, Townsend, RR, editors. Hypertension and vascular disease. Hamilton, OT, Canada: BC Decker Inc; 2006:407–15 pp.Search in Google Scholar
13. Lindheimer, MD, Roberts, JM, Cunningham, FG, Chesley, L. Introduction, history, controversies, and definitions. In: Lindheimer, MD, Roberts, JM, Cunningham, FG, editors. Chesley’s hypertensive disorders in pregnancy, 3rd ed. Burlington, MA, USA: Elsevier; 2009:1–23 pp.10.1016/B978-0-12-374213-1.00001-XSearch in Google Scholar
14. Bell, MJ. A historical overview of preeclampsia-eclampsia. J Obstet Gynecol Neonatal Nurs 2010;39:510–8. https://doi.org/10.1111/j.1552-6909.2010.01172.x.Search in Google Scholar
15. Itoh, Y. Clinical research and tests on urinary protein: its past, present and future. Jpn J Electroph 1997;41:325–8. [in Japanese]. https://doi.org/10.2198/sbk.41.325.Search in Google Scholar
16. West, JB. Stephan Hales: neglected respiratory physiologist. J Appl Physiol Respir Environ Exerc Physiol 1984;57:635–9. https://doi.org/10.1152/jappl.1984.57.3.635.Search in Google Scholar
17. Roguin, A. Scipione Riva-Rocci and the men behind the mercury sphygmomanometer. Int J Clin Pract 2006;60:73–9. https://doi.org/10.1111/j.1742-1241.2005.00548.x.Search in Google Scholar
18. Korotkov, NS. Concerning the problem of the methods of blood pressure measurement. J Hypertens 2005;3:5 (translated in English from original article from Proceeding of the Emperor’s Military Medical Academy St Petersburg 1905;11:365 [in Russian]). https://doi.org/10.1097/00004872-200501000-00003.Search in Google Scholar
19. Savino, R, Paduano, S, Preianò, M, Terracciano, R. The proteomics big challenge for biomarkers and new drug-targets discovery. Int J Mol Sci 2012;13:13926–48. https://doi.org/10.3390/ijms131113926.Search in Google Scholar
20. Richter, R, Schulz-Knappe, P, Schrader, M, Ständker, L, Jürgens, M, Tammen, H, et al.. Composition of the peptide fraction in human blood plasma: database of circulating human peptides. J Chromatogr B Biomed Sci Appl 1999;726:25–35. https://doi.org/10.1016/s0378-4347(99)00012-2.Search in Google Scholar
21. Van, JA, Scholey, JW, Konvalinka, A. Insights into diabetic kidney disease using urinary proteomics and bioinformatics. J Am Soc Nephrol 2017;28:1050–61. https://doi.org/10.1681/asn.2016091018.Search in Google Scholar
22. Greening, DW, Kapp, EA, Simpson, RJ. The peptidome comes of age: mass spectrometry-based characterization of the circulating cancer peptidome. Enzymes 2017;42:27–64. https://doi.org/10.1016/bs.enz.2017.08.003.Search in Google Scholar PubMed
23. Tanaka, K, Tsugawa, N, Kim, Y-O, Sanuki, N, Takeda, U, Lee, L-J. A new rapid and comprehensive peptidome analysis by one-step direct transfer technology for 1-D elecrophoresis/MALDI mass spectrometry. Biochem Biophys Res Commun 2009;379:110–4. https://doi.org/10.1016/j.bbrc.2008.12.016.Search in Google Scholar PubMed
24. Araki, Y, Nonaka, D, Tajima, A, Maruyama, M, Nitto, T, Ishikawa, H, et al.. Quantitative peptidomic analysis by a newly developed one-step direct transfer technology without depletion of major blood proteins: its potential utility for monitoring of pathophysiological status in pregnancy-induced hypertension. Proteomics 2011;11:2727–37. https://doi.org/10.1002/pmic.201000753.Search in Google Scholar PubMed
25. Hamamura, K, Nonaka, D, Ishikawa, H, Banzai, M, Yoshitake, H, Yanagida, M, et al.. Simple quantitation for potential serum disease biomarker peptides, primarily identified by a peptidomics approach in the serum with hypertensive disorders of pregnancy. Ann Clin Biochem 2016;53:85–96. https://doi.org/10.1177/0004563215583697.Search in Google Scholar PubMed
26. Hamamura, K, Yanagida, M, Ishikawa, H, Banzai, M, Yoshitake, H, Nonaka, D, et al.. Quantitative measurement of a candidate serum biomarker peptide derived from α2-HS-glycoprotein, and a preliminary trial of multi-dimensional peptide analysis in women with pregnancy induced hypertension. Ann Clin Biochem 2018;55:287–95. https://doi.org/10.1177/0004563217717748.Search in Google Scholar PubMed
27. Yanagida, M, Hamamura, K, Takamori, K, Araki, Y. The simultaneous quantification of candidate serum biomarker peptides for hypertensive disorders of pregnancy. Ann Clin Biochem 2019;56:457–65. https://doi.org/10.1177/0004563219839084.Search in Google Scholar PubMed
28. Araki, Y. Commentary on a “strategy to develop clinical peptide biomarkers for more accurate evaluation of the pathophysiological status of hypertensive disorders of pregnancy”. Clin Mother Child Health 2020;17:373.10.1016/bs.acc.2019.07.007Search in Google Scholar
29. Ross, PL, Huang, YN, Marches, JN, Williamson, B, Parker, K, Hattan, S, et al.. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004;3:1154–69. https://doi.org/10.1074/mcp.m400129-mcp200.Search in Google Scholar
30. Thompson, A, Schäfer, J, Kuhn, K, Kienle, S, Schwarz, J, Schmidt, G, et al.. Anal Chem 2003;75:1895–904. Erratum in: Anal Chem 2003;75:4942. Johnstone, R [added]. Erratum in: Anal Chem 2006;78:4235. Mohammed A, Karim A [added]. https://doi.org/10.1021/ac0262560.Search in Google Scholar PubMed
31. Gillet, LC, Navarro, P, Tate, S, Röst, H, Selevsek, N, Reiter, L, et al.. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 2012;11:O111.016717. https://doi.org/10.1074/mcp.O111.016717.Search in Google Scholar PubMed PubMed Central
32. Ow, SY, Cardona, T, Taton, A, Magnuson, A, Lindblad, P, Stensjö, K, et al.. Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J Proteome Res 2008;7:1615–28. https://doi.org/10.1021/pr700604v.Search in Google Scholar PubMed
33. Li, J, Van Vranken, JG, Vaites, LP, Schweppe, DK, Huttlin, EL, Etienne, C, et al.. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat Methods 2020;17:399–404. https://doi.org/10.1038/s41592-020-0781-4.Search in Google Scholar PubMed PubMed Central
34. Ludwig, C, Gillet, L, Rosenberger, G, Amon, S, Collins, BC, Aebersold, R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 2018;14:e8126. https://doi.org/10.15252/msb.20178126.Search in Google Scholar PubMed PubMed Central
35. Erickson, BK, Mintseris, J, Schweppe, DK, Navarrete-Perea, J, Erickson, AR, Nusinow, DP, et al.. Active instrument engagement combined with a real-time database search for improved performance of sample multiplexing workflows. J Proteome Res 2019;18:1299–306. https://doi.org/10.1021/acs.jproteome.8b00899.Search in Google Scholar PubMed PubMed Central
36. Schweppe, DK, Eng, JK, Yu, Q, Bailey, D, Rad, R, Navarrete-Perea, J, et al.. Full-featured, real-time database searching platform enables fast and accurate multiplexed quantitative proteomics. J Proteome Res 2020;19:2026–34. https://doi.org/10.1021/acs.jproteome.9b00860.Search in Google Scholar PubMed PubMed Central
37. Wakabayashi, I, Yanagida, M, Araki, Y. Associations of cardiovascular risk with circulating peptides related to hypertensive disorders of pregnancy. Hypertens Res 2021, in press. https://doi.org/10.1038/s41440-021-00747-6 Search in Google Scholar PubMed
38. Ker, JA, Soma-Pillay, P. NT-proBNP: when is it useful in obstetric medicine? Obstet Med 2018;11:3–5. https://doi.org/10.1177/1753495x17736717.Search in Google Scholar PubMed PubMed Central
39. Phipps, EA, Thadhani, R, Benzing, T, Karumanchi, SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 2019;15:275–89. Erratum in: Nat Rev Nephrol. 2019;15:386. https://doi.org/10.1038/s41581-019-0119-6.Search in Google Scholar PubMed PubMed Central
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorials
- EU health policy is on the brink of a spectacular own-goal that will harm patients and hamper innovation
- Theranos revisited: the trial and lessons learned
- Reviews
- Review and evolution of guidelines for diagnosis of COVID-19 vaccine induced thrombotic thrombocytopenia (VITT)
- High-sensitivity cardiac troponins in pediatric population
- Opinion Papers
- Implementation of the new EU IVD regulation – urgent initiatives are needed to avert impending crisis
- Exploration of novel biomarkers for hypertensive disorders of pregnancy by comprehensive analysis of peptide fragments in blood: their potential and technologies supporting quantification
- General Clinical Chemistry and Laboratory Medicine
- Total lab automation: sample stability of clinical chemistry parameters in an automated storage and retrieval module
- Instability of corticotropin during long-term storage – myth or reality?
- External quality assessment of serum indices: Spanish SEQC-ML program
- Comparison of two LC-MS/MS methods for the quantification of 24,25-dihydroxyvitamin D3 in patients and external quality assurance samples
- Isotope dilution LC-MS/MS quantification of the cystic fibrosis transmembrane conductance regulator (CFTR) modulators ivacaftor, lumacaftor, tezacaftor, elexacaftor, and their major metabolites in human serum
- Hematology and Coagulation
- The development of autoverification system of lymphocyte subset assays on the flow cytometry platform
- Cancer Diagnostics
- Comparison of the QuikRead go® point-of-care faecal immunochemical test for haemoglobin with the FOB Gold Wide® laboratory analyser to diagnose colorectal cancer in symptomatic patients
- Evaluation of circulating Dickkopf-1 as a prognostic biomarker in ovarian cancer patients
- Cardiovascular Diseases
- Soluble CD40 ligand and outcome in patients with coronary artery disease undergoing percutaneous coronary intervention
- Diabetes
- Lot variation and inter-device differences contribute to poor analytical performance of the DCA Vantage™ HbA1c POCT instrument in a true clinical setting
- Infectious Diseases
- Lipase elevation in serum of COVID-19 patients: frequency, extent of increase and clinical value
- Acknowledgment
- Acknowledgment
- Letters to the Editors
- Presepsin value predicts the risk of developing severe/critical COVID-19 illness: results of a pooled analysis
- Measuring accuracy of the neutralizing activity of COVID-19 convalescent plasma
- Evaluation of reference intervals for classical and alternative pathway functional complement assays
- Reference values for plasma neurofilament light chain in healthy Chinese children
- Cerebrospinal fluid neurogranin in Alzheimer’s disease studies: are immunoassay results interchangeable?
- Pepsin pretreatment corrects underestimation of 25-hydroxyvitamin D measurement by an automated immunoassay in subjects with high vitamin D binding protein levels
- A conspicuous reduced plasma creatinine: the first presenting sign of Waldenstrom macroglobulinemia
- Effect of non-linearity on rheumatoid factor assay in Beckman system IMMAGE800
Articles in the same Issue
- Frontmatter
- Editorials
- EU health policy is on the brink of a spectacular own-goal that will harm patients and hamper innovation
- Theranos revisited: the trial and lessons learned
- Reviews
- Review and evolution of guidelines for diagnosis of COVID-19 vaccine induced thrombotic thrombocytopenia (VITT)
- High-sensitivity cardiac troponins in pediatric population
- Opinion Papers
- Implementation of the new EU IVD regulation – urgent initiatives are needed to avert impending crisis
- Exploration of novel biomarkers for hypertensive disorders of pregnancy by comprehensive analysis of peptide fragments in blood: their potential and technologies supporting quantification
- General Clinical Chemistry and Laboratory Medicine
- Total lab automation: sample stability of clinical chemistry parameters in an automated storage and retrieval module
- Instability of corticotropin during long-term storage – myth or reality?
- External quality assessment of serum indices: Spanish SEQC-ML program
- Comparison of two LC-MS/MS methods for the quantification of 24,25-dihydroxyvitamin D3 in patients and external quality assurance samples
- Isotope dilution LC-MS/MS quantification of the cystic fibrosis transmembrane conductance regulator (CFTR) modulators ivacaftor, lumacaftor, tezacaftor, elexacaftor, and their major metabolites in human serum
- Hematology and Coagulation
- The development of autoverification system of lymphocyte subset assays on the flow cytometry platform
- Cancer Diagnostics
- Comparison of the QuikRead go® point-of-care faecal immunochemical test for haemoglobin with the FOB Gold Wide® laboratory analyser to diagnose colorectal cancer in symptomatic patients
- Evaluation of circulating Dickkopf-1 as a prognostic biomarker in ovarian cancer patients
- Cardiovascular Diseases
- Soluble CD40 ligand and outcome in patients with coronary artery disease undergoing percutaneous coronary intervention
- Diabetes
- Lot variation and inter-device differences contribute to poor analytical performance of the DCA Vantage™ HbA1c POCT instrument in a true clinical setting
- Infectious Diseases
- Lipase elevation in serum of COVID-19 patients: frequency, extent of increase and clinical value
- Acknowledgment
- Acknowledgment
- Letters to the Editors
- Presepsin value predicts the risk of developing severe/critical COVID-19 illness: results of a pooled analysis
- Measuring accuracy of the neutralizing activity of COVID-19 convalescent plasma
- Evaluation of reference intervals for classical and alternative pathway functional complement assays
- Reference values for plasma neurofilament light chain in healthy Chinese children
- Cerebrospinal fluid neurogranin in Alzheimer’s disease studies: are immunoassay results interchangeable?
- Pepsin pretreatment corrects underestimation of 25-hydroxyvitamin D measurement by an automated immunoassay in subjects with high vitamin D binding protein levels
- A conspicuous reduced plasma creatinine: the first presenting sign of Waldenstrom macroglobulinemia
- Effect of non-linearity on rheumatoid factor assay in Beckman system IMMAGE800