Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Resolution of inflammation: a new therapeutic frontier

Key Points

  • Inflammation is a beneficial process, designed to contain and eradicate threats to the host organism. Dysregulation of the magnitude or duration of inflammation contributes to multiple pathologies.

  • Traditionally, drugs have been designed to reduce inflammation. Some such approaches — for example, non-steroidal anti-inflammatory drugs or pro-inflammatory cytokine ablation — achieve this by targeting factors that drive inflammation; others — for example, glucocorticoids — are directly anti-inflammatory.

  • Active, specialized pathways bring about the resolution of inflammation. These involve discrete mediators and distinct cell phenotypes that act in a non-phlogistic manner to promote the clearance of inflammatory cells and a return to local tissue homeostasis.

  • Recent advances in our understanding of the central processes in the resolution of inflammation — including pro-inflammatory mediator catabolism, dampening of downstream signalling, apoptosis and efferocytosis of inflammatory cells and their regulation — permit targeted pharmacological interventions to promote inflammatory resolution.

  • The development of drugs that promote or mimic the mode of action of endogenous pro-resolution pathways may afford a novel complementary, or potentially superior, strategy to traditional options — thus regulating inflammation and restoring function, not merely suppressing inflammation.

  • Recent discoveries suggest that the innate immune response, and in particular its resolution, may modulate the subsequent development of adaptive immunity and so may afford further therapeutic targets. Multiple challenges remain in developing human models of inflammatory resolution and in translating murine discoveries to date into drugs for humans.

Abstract

Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resolution and adaptive immunity.
Figure 2: Acute inflammation and its resolution.
Figure 3: Anti-inflammation versus pro-resolution strategies.

Similar content being viewed by others

References

  1. Buckley, C. D., Gilroy, D. W. & Serhan, C. N. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40, 315–327 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Buckley, C. D., Gilroy, D. W., Serhan, C. N., Stockinger, B. & Tak, P. P. The resolution of inflammation. Nat. Rev. Immunol. 13, 59–66 (2013).

    CAS  PubMed  Google Scholar 

  3. Gilroy, D. W. et al. Inducible cyclooxygenase-derived 15-deoxyΔ12–14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. Faseb J. 17, 2269–2271 (2003).

    CAS  PubMed  Google Scholar 

  4. Newson, J. et al. Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood 124, 1748–1764 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakano, H. et al. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat. Immunol. 10, 394–402 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    CAS  PubMed  Google Scholar 

  7. Wakim, L. M. & Bevan, M. J. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature 471, 629–632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ersland, K., Wuthrich, M. & Klein, B. S. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi. Cell Host Microbe 7, 474–487 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Uderhardt, S. et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36, 834–846 (2012). This paper very nicely differentiates between the role of tissue-resident macrophages versus monocyte-derived macrophages during the resolution of inflammation.

    CAS  PubMed  Google Scholar 

  10. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS  PubMed  Google Scholar 

  11. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson, E. B. et al. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340, 202–207 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Teijaro, J. R. et al. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340, 207–211 (2013). Papers 12 and 13 describe findings that inhibiting ongoing acute inflammation resulting from persistent lymphocytic choriomeningitis virus infection engages adaptive immunity and clears the infection, leading to resolution.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez-Navajas, J. M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Boasso, A., Hardy, A. W., Anderson, S. A., Dolan, M. J. & Shearer, G. M. HIV-induced type I interferon and tryptophan catabolism drive T cell dysfunction despite phenotypic activation. PLoS ONE 3, e2961 (2008).

    PubMed  PubMed Central  Google Scholar 

  16. Cope, A. P. et al. Chronic tumor necrosis factor alters T cell responses by attenuating T cell receptor signaling. J. Exp. Med. 185, 1573–1584 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wijbrandts, C. A. et al. Analysis of apoptosis in peripheral blood and synovial tissue very early after initiation of infliximab treatment in rheumatoid arthritis patients. Arthritis Rheum. 58, 3330–3339 (2008).

    CAS  PubMed  Google Scholar 

  19. Thurlings, R. M. et al. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease. PLoS ONE 4, e7865 (2009). References 18 and 19 illustrate the dynamics of monocyte trafficking in humans with rheumatoid arthritis and alludes to the possibility that dampening acute inflammation in this disease may also trigger resolution.

    PubMed  PubMed Central  Google Scholar 

  20. Mi, S. et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and -independent mechanisms. J. Immunol. 187, 3003–3014 (2011).

    CAS  PubMed  Google Scholar 

  21. Reddy, N. M., Potteti, H. R., Mariani, T. J., Biswal, S. & Reddy, S. P. Conditional deletion of Nrf2 in airway epithelium exacerbates acute lung injury and impairs the resolution of inflammation. Am. J. Respir. Cell. Mol. Biol. 45, 1161–1168 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bynoe, M. S. et al. CD73 is critical for the resolution of murine colonic inflammation. J. Biomed. Biotechnol. 2012, 260983 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Mavers, M. et al. Cyclin-dependent kinase inhibitor p21, via its C-terminal domain, is essential for resolution of murine inflammatory arthritis. Arthritis Rheum. 64, 141–152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tomasini, R. et al. TAp73 is required for macrophage-mediated innate immunity and the resolution of inflammatory responses. Cell Death Differ. 20, 293–301 (2013).

    CAS  PubMed  Google Scholar 

  25. Chiang, N. et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484, 524–528 (2012). This paper showed that specialized pro-resolving mediators greatly enhance antibiotic efficacy, and that the use of pro-resolution pharmacology to treat bacterial infection does not compromise host defence.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Favas, C. & Isenberg, D. A. B-cell-depletion therapy in SLE — what are the current prospects for its acceptance? Nat. Rev. Rheumatol. 5, 711–716 (2009).

    CAS  PubMed  Google Scholar 

  27. Isenberg, D. A. Rituximab — it was the best of times, it was the worst of times. Autoimmun. Rev. 11, 790–791 (2012).

    CAS  PubMed  Google Scholar 

  28. Segal, A. W., Geisow, M., Garcia, R., Harper, A. & Miller, R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature 290, 406–409 (1981).

    CAS  PubMed  Google Scholar 

  29. Pollock, J. D. et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9, 202–209 (1995).

    CAS  PubMed  Google Scholar 

  30. Stoecklin, G. & Anderson, P. Posttranscriptional mechanisms regulating the inflammatory response. Adv. Immunol. 89, 1–37 (2006).

    CAS  PubMed  Google Scholar 

  31. Liu, J. et al. Identification and characterization of a unique leucine-rich repeat protein (LRRC33) that inhibits Toll-like receptor-mediated NF-κB activation. Biochem. Biophys. Res. Commun. 434, 28–34 (2013).

    CAS  PubMed  Google Scholar 

  32. Divanovic, S. et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol. 6, 571–578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    CAS  PubMed  Google Scholar 

  34. O'Brien, A. J. et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2 . Nat. Med. 20, 518–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Degraaf, A. J., Zaslona, Z., Bourdonnay, E. & Peters-Golden, M. Prostaglandin E2 reduces Toll-like receptor 4 expression in alveolar macrophages by inhibition of translation. Am. J. Respir. Cell. Mol. Biol. 51, 242–250 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Anderson, P. Post-transcriptional control of cytokine production. Nat. Immunol. 9, 353–359 (2008).

    CAS  PubMed  Google Scholar 

  37. Carballo, E., Lai, W. S. & Blackshear, P. J. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891–1899 (2000).

    CAS  PubMed  Google Scholar 

  38. Ogilvie, R. L. et al. Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay. J. Immunol. 174, 953–961 (2005).

    CAS  PubMed  Google Scholar 

  39. Sauer, I. et al. Interferons limit inflammatory responses by induction of tristetraprolin. Blood 107, 4790–4797 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Linker, K. et al. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res. 33, 4813–4827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Phillips, K., Kedersha, N., Shen, L., Blackshear, P. J. & Anderson, P. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis. Proc. Natl Acad. Sci. USA 101, 2011–2016 (2004).

    CAS  PubMed  Google Scholar 

  42. Ogilvie, R. L. et al. Tristetraprolin mediates interferon-γ mRNA decay. J. Biol. Chem. 284, 11216–11223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Carballo, E., Lai, W. S. & Blackshear, P. J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).

    CAS  PubMed  Google Scholar 

  44. Chen, Y. L. et al. Differential regulation of ARE-mediated TNFα and IL-1β mRNA stability by lipopolysaccharide in RAW264.7 cells. Biochem. Biophys. Res. Commun. 346, 160–168 (2006).

    CAS  PubMed  Google Scholar 

  45. von Roretz, C. & Gallouzi, I. E. Decoding ARE-mediated decay: is microRNA part of the equation? J. Cell Biol. 181, 189–194 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shyu, A. B., Wilkinson, M. F. & van Hoof, A. Messenger RNA regulation: to translate or to degrade. EMBO J. 27, 471–481 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Piecyk, M. et al. TIA-1 is a translational silencer that selectively regulates the expression of TNF-α. EMBO J. 19, 4154–4163 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Muhl, H. & Pfeilschifter, J. Anti-inflammatory properties of pro-inflammatory interferon-γ. Int. Immunopharmacol. 3, 1247–1255 (2003).

    CAS  PubMed  Google Scholar 

  49. Harvey, L. J. & McArdle, H. J. Biomarkers of copper status: a brief update. Br. J. Nutr. 99 (Suppl. 3), S10–S13 (2008).

    CAS  PubMed  Google Scholar 

  50. Sampath, P., Mazumder, B., Seshadri, V. & Fox, P. L. Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3′ untranslated region. Mol. Cell. Biol. 23, 1509–1519 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mukhopadhyay, R., Jia, J., Arif, A., Ray, P. S. & Fox, P. L. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem. Sci. 34, 324–331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vyas, K. et al. Genome-wide polysome profiling reveals an inflammation-responsive posttranscriptional operon in gamma interferon-activated monocytes. Mol. Cell. Biol. 29, 458–470 (2009).

    CAS  PubMed  Google Scholar 

  53. Liang, J. et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J. Biol. Chem. 283, 6337–6346 (2008).

    CAS  PubMed  Google Scholar 

  54. Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009).

    CAS  PubMed  Google Scholar 

  55. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    CAS  PubMed  Google Scholar 

  56. Perry, M. M. et al. Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol. 180, 5689–5698 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhaumik, D. et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 1, 402–411 (2009).

    CAS  Google Scholar 

  58. Jones, S. W. et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-α and MMP13. Osteoarthritis Cartilage 17, 464–472 (2009).

    CAS  PubMed  Google Scholar 

  59. Nahid, M. A., Pauley, K. M., Satoh, M. & Chan, E. K. miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J. Biol. Chem. 284, 34590–34599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sheedy, F. J. et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 11, 141–147 (2010).

    CAS  PubMed  Google Scholar 

  61. Schmidt, M. F. Drug target miRNAs: chances and challenges. Trends Biotechnol. 32, 578–585 (2014).

    CAS  PubMed  Google Scholar 

  62. Tili, E. et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179, 5082–5089 (2007).

    CAS  PubMed  Google Scholar 

  63. Bala, S. et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease. J. Biol. Chem. 286, 1436–1444 (2011).

    CAS  PubMed  Google Scholar 

  64. Jones, M. R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat. Cell Biol. 11, 1157–1163 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hansen, W. R., Keelan, J. A., Skinner, S. J. & Mitchell, M. D. Key enzymes of prostaglandin biosynthesis and metabolism. Coordinate regulation of expression by cytokines in gestational tissues: a review. Prostaglandins Other Lipid Mediat. 57, 243–257 (1999).

    CAS  PubMed  Google Scholar 

  66. Hahn, E. L. et al. Prostaglandin E2 alterations during sepsis are partially mediated by endotoxin-induced inhibition of prostaglandin 15-hydroxydehydrogenase. J. Trauma 44, 777–781; discussion 781–782 (1998).

    CAS  PubMed  Google Scholar 

  67. Nibbs, R. J. & Graham, G. J. Immune regulation by atypical chemokine receptors. Nat. Rev. Immunol. 13, 815–829 (2013).

    PubMed  Google Scholar 

  68. Ariel, A. et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat. Immunol. 7, 1209–1216 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014).

    CAS  PubMed  Google Scholar 

  70. Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18, 581–588 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Savill, J. Apoptosis in resolution of inflammation. J. Leukoc. Biol. 61, 375–380 (1997).

    CAS  PubMed  Google Scholar 

  72. Cara, D. C., Negrao-Correa, D. & Teixeira, M. M. Mechanisms underlying eosinophil trafficking and their relevance in vivo. Histol. Histopathol. 15, 899–920 (2000).

    CAS  PubMed  Google Scholar 

  73. Sousa, L. P. et al. Cyclic AMP enhances resolution of allergic pleurisy by promoting inflammatory cell apoptosis via inhibition of PI3K/Akt and NF-κB. Biochem. Pharmacol. 78, 396–405 (2009).

    CAS  PubMed  Google Scholar 

  74. Lawrence, T. & Fong, C. The resolution of inflammation: anti-inflammatory roles for NF-κB. Int. J. Biochem. Cell Biol. 42, 519–523 (2010).

    CAS  PubMed  Google Scholar 

  75. Song, G., Ouyang, G. & Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59–71 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rodrigues, D. H. et al. Absence of PI3Kγ leads to increased leukocyte apoptosis and diminished severity of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 222, 90–94 (2010).

    CAS  PubMed  Google Scholar 

  77. Insel, P. A., Zhang, L., Murray, F., Yokouchi, H. & Zambon, A. C. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol. (Oxf.) 204, 277–287 (2012).

    CAS  Google Scholar 

  78. Rossi, A. G. et al. Agents that elevate cAMP inhibit human neutrophil apoptosis. Biochem. Biophys. Res. Commun. 217, 892–899 (1995).

    CAS  PubMed  Google Scholar 

  79. Rossi, A. G. et al. Regulation of macrophage phagocytosis of apoptotic cells by cAMP. J. Immunol. 160, 3562–3568 (1998).

    CAS  PubMed  Google Scholar 

  80. Sousa, L. P. et al. PDE4 inhibition drives resolution of neutrophilic inflammation by inducing apoptosis in a PKA–PI3K/Akt-dependent and NF-κB-independent manner. J. Leukoc. Biol. 87, 895–904 (2010).

    CAS  PubMed  Google Scholar 

  81. Bystrom, J. et al. Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112, 4117–4127 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Junttila, M. R., Li, S. P. & Westermarck, J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J. 22, 954–965 (2008).

    CAS  PubMed  Google Scholar 

  83. Chapman, M. S. & Miner, J. N. Novel mitogen-activated protein kinase kinase inhibitors. Expert Opin. Investig. Drugs 20, 209–220 (2011).

    CAS  PubMed  Google Scholar 

  84. Sawatzky, D. A., Willoughby, D. A., Colville-Nash, P. R. & Rossi, A. G. The involvement of the apoptosis-modulating proteins ERK 1/2, Bcl-xL and Bax in the resolution of acute inflammation in vivo. Am. J. Pathol. 168, 33–41 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Langereis, J. D., Raaijmakers, H. A., Ulfman, L. H. & Koenderman, L. Abrogation of NF-κB signaling in human neutrophils induces neutrophil survival through sustained p38-MAPK activation. J. Leukoc. Biol. 88, 655–664 (2010).

    CAS  PubMed  Google Scholar 

  86. Allaeys, I., Gymninova, I., Canet-Jourdan, C. & Poubelle, P. E. IL-32γ delays spontaneous apoptosis of human neutrophils through MCL-1, regulated primarily by the p38 MAPK pathway. PLoS ONE 9, e109256 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Perdiguero, E., Kharraz, Y., Serrano, A. L. & Munoz-Canoves, P. MKP-1 coordinates ordered macrophage-phenotype transitions essential for stem cell-dependent tissue repair. Cell Cycle 11, 877–886 (2012).

    CAS  PubMed  Google Scholar 

  88. Chung, E. Y. et al. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 27, 952–964 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Leitch, A. E. et al. Cyclin-dependent kinases 7 and 9 specifically regulate neutrophil transcription and their inhibition drives apoptosis to promote resolution of inflammation. Cell Death Differ. 19, 1950–1961 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rossi, A. G. et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat. Med. 12, 1056–1064 (2006). One of the first experimental papers showing that pharmacologically triggering PMN apoptosis leads to resolution.

    CAS  PubMed  Google Scholar 

  91. Leitch, A. E. et al. The cyclin-dependent kinase inhibitor R-roscovitine down-regulates Mcl-1 to override pro-inflammatory signalling and drive neutrophil apoptosis. Eur. J. Immunol. 40, 1127–1138 (2010).

    CAS  PubMed  Google Scholar 

  92. Alessandri, A. L. et al. Induction of eosinophil apoptosis by the cyclin-dependent kinase inhibitor AT7519 promotes the resolution of eosinophil-dominant allergic inflammation. PLoS ONE 6, e25683 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shao, W. H. & Cohen, P. L. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res. Ther. 13, 202 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Brown, J. R., Goldblatt, D., Buddle, J., Morton, L. & Thrasher, A. J. Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease (CGD). J. Leukoc. Biol. 73, 591–599 (2003).

    CAS  PubMed  Google Scholar 

  95. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).

    CAS  PubMed  Google Scholar 

  97. Gude, D. R. et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 22, 2629–2638 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Knies, U. E. et al. Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc. Natl Acad. Sci. USA 95, 12322–12327 (1998).

    CAS  PubMed  Google Scholar 

  99. Horino, K. et al. A monocyte chemotactic factor, S19 ribosomal protein dimer, in phagocytic clearance of apoptotic cells. Lab. Invest. J. Techn. Methods Pathol. 78, 603–617 (1998).

    CAS  Google Scholar 

  100. Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869–874 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Vago, J. P. et al. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J. Leukoc. Biol. 92, 249–258 (2012).

    CAS  PubMed  Google Scholar 

  103. Brown, S. et al. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418, 200–203 (2002).

    CAS  PubMed  Google Scholar 

  104. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    CAS  PubMed  Google Scholar 

  105. Fadok, V. A., Bratton, D. L. & Henson, P. M. Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J. Clin. Invest. 108, 957–962 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gregory, C. D. & Pound, J. D. Microenvironmental influences of apoptosis in vivo and in vitro. Apoptosis 15, 1029–1049 (2010).

    CAS  PubMed  Google Scholar 

  107. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    CAS  PubMed  Google Scholar 

  108. Devitt, A. et al. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392, 505–509 (1998).

    CAS  PubMed  Google Scholar 

  109. Fadok, V. A. & Henson, P. M. Apoptosis: giving phosphatidylserine recognition an assist — with a twist. Curr. Biol. 13, R655–R657 (2003).

    CAS  PubMed  Google Scholar 

  110. Bystrom, J., Wynn, T. A., Domachowske, J. B. & Rosenberg, H. F. Gene microarray analysis reveals interleukin-5-dependent transcriptional targets in mouse bone marrow. Blood 103, 868–877 (2004).

    PubMed  Google Scholar 

  111. Bellingan, G. J. et al. Adhesion molecule-dependent mechanisms regulate the rate of macrophage clearance during the resolution of peritoneal inflammation. J. Exp. Med. 196, 1515–1521 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ariel, A. & Serhan, C. N. New lives given by cell death: macrophage differentiation following their encounter with apoptotic leukocytes during the resolution of inflammation. Front. Immunol. 3, 4 (2012).

    PubMed  PubMed Central  Google Scholar 

  113. Schif-Zuck, S. et al. Saturated-efferocytosis generates pro-resolving CD11blow macrophages: modulation by resolvins and glucocorticoids. Eur. J. Immunol. 41, 366–379 (2011).

    CAS  PubMed  Google Scholar 

  114. Fadok, V. A., Warner, M. L., Bratton, D. L. & Henson, P. M. CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (αvβ3). J. Immunol. 161, 6250–6257 (1998).

    CAS  PubMed  Google Scholar 

  115. Fadok, V. A. & Henson, P. M. Apoptosis: getting rid of the bodies. Curr. Biol. 8, R693–R695 (1998).

    CAS  PubMed  Google Scholar 

  116. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Serhan, C. N. et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 26, 1755–1765 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Medeiros, A. I., Serezani, C. H., Lee, S. P. & Peters-Golden, M. Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J. Exp. Med. 206, 61–68 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. van Rijt, L. S. et al. Persistent activation of dendritic cells after resolution of allergic airway inflammation breaks tolerance to inhaled allergens in mice. Am. J. Respir. Crit. Care Med. 184, 303–311 (2011).

    CAS  PubMed  Google Scholar 

  120. Rosas, M. et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 344, 645–648 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012). This paper emphasizes that monocyte or macrophage populations may possess diverse phenotypes that are neither M1 (pro-inflammatory) nor M2 (anti-inflammatory), but are commensurate with the phase of inflammation.

    CAS  PubMed  Google Scholar 

  123. Anders, H. J. & Ryu, M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80, 915–925 (2011).

    CAS  PubMed  Google Scholar 

  124. Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069 (2007). This paper demonstrates the effect of macrophage phenotype switching on tissue resolution.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mounier, R. et al. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell. Metab. 18, 251–264 (2013).

    CAS  PubMed  Google Scholar 

  126. Bannenberg, G. L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174, 4345–4355 (2005).

    CAS  PubMed  Google Scholar 

  127. Zmijewski, J. W. et al. Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am. J. Respir. Crit. Care Med. 178, 168–179 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Alessandri, A. L. et al. Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol. Ther. 139, 189–212 (2013).

    CAS  PubMed  Google Scholar 

  130. Poon, I. K., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166–180 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Koedel, U. et al. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog. 5, e1000461 (2009).

    PubMed  PubMed Central  Google Scholar 

  132. Cash, J. L., Norling, L. V. & Perretti, M. Resolution of inflammation: targeting GPCRs that interact with lipids and peptides. Drug Discov. Today 19, 1186–1192 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Gilroy, D. W. et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med. 5, 698–701 (1999).

    CAS  PubMed  Google Scholar 

  134. Rajakariar, R. et al. Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyΔ12–14 PGJ2 . Proc. Natl Acad. Sci. USA 104, 20979–20984 (2007).

    CAS  PubMed  Google Scholar 

  135. Trivedi, S. G. et al. Essential role for hematopoietic prostaglandin D2 synthase in the control of delayed type hypersensitivity. Proc. Natl Acad. Sci. USA 103, 5179–5184 (2006).

    CAS  PubMed  Google Scholar 

  136. Chan, M. M. & Moore, A. R. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J. Immunol. 184, 6418–6426 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Straus, D. S. & Glass, C. K. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol. 28, 551–558 (2007).

    CAS  PubMed  Google Scholar 

  138. Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103–108 (2000).

    CAS  PubMed  Google Scholar 

  139. Kim, W. J., Kim, J. H. & Jang, S. K. Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A. EMBO J. 26, 5020–5032 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Anderson, P. & Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33, 141–150 (2008).

    CAS  PubMed  Google Scholar 

  141. Recchiuti, A., Krishnamoorthy, S., Fredman, G., Chiang, N. & Serhan, C. N. MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J. 25, 544–560 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Krishnamoorthy, S., Recchiuti, A., Chiang, N., Fredman, G. & Serhan, C. N. Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am. J. Pathol. 180, 2018–2027 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Braley-Mullen, H. & Sharp, G. C. Adoptive transfer murine model of granulomatous experimental autoimmune thyroiditis. Int. Rev. Immunol. 19, 535–555 (2000).

    CAS  PubMed  Google Scholar 

  144. Fang, Y., Sharp, G. C., Yagita, H. & Braley-Mullen, H. A critical role for TRAIL in resolution of granulomatous experimental autoimmune thyroiditis. J. Pathol. 216, 505–513 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Fang, Y., Sharp, G. C. & Braley-Mullen, H. Interleukin-10 promotes resolution of granulomatous experimental autoimmune thyroiditis. Am. J. Pathol. 172, 1591–1602 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. McGrath, E. E. et al. TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. J. Leukoc. Biol. 90, 855–865 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Gemici, B. et al. H2S-releasing drugs: anti-inflammatory, cytoprotective and chemopreventative potential. Nitric Oxide 46, 25–31 (2014).

    PubMed  Google Scholar 

  148. Dufton, N., Natividad, J., Verdu, E. F. & Wallace, J. L. Hydrogen sulfide and resolution of acute inflammation: a comparative study utilizing a novel fluorescent probe. Sci. Rep. 2, 499 (2012).

    PubMed  PubMed Central  Google Scholar 

  149. Wallace, J. L. & Wang, R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 14, 329–345 (2015).

    CAS  PubMed  Google Scholar 

  150. Montero-Melendez, T. ACTH: The forgotten therapy. Semin. Immunol. 27, 216–226 (2015).

    CAS  PubMed  Google Scholar 

  151. Matzelle, M. M. et al. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum. 64, 1540–1550 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Chiang, N., Dalli, J., Colas, R. A. & Serhan, C. N. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J. Exp. Med. 212, 1203–1217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00799552 (2010).

  154. Cahill, R. N., Frost, H. & Trnka, Z. The effects of antigen on the migration of recirculating lymphocytes through single lymph nodes. J. Exp. Med. 143, 870–888 (1976).

    CAS  PubMed  Google Scholar 

  155. Hopkins, J., McConnell, I. & Pearson, J. D. Lymphocyte traffic through antigen-stimulated lymph nodes. II. Role of prostaglandin E2 as a mediator of cell shutdown. Immunology 42, 225–231 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. McConnell, I. & Hopkins, J. Lymphocyte traffic through antigen-stimulated lymph nodes. I. Complement activation within lymph nodes initiates cell shutdown. Immunology 42, 217–223 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Johnston, M. G., Hay, J. B. & Movat, H. Z. Kinetics of prostaglandin production in various inflammatory lesions, measured in draining lymph. Am. J. Pathol. 95, 225–238 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Yang, C. W. & Unanue, E. R. Neutrophils control the magnitude and spread of the immune response in a thromboxane A2-mediated process. J. Exp. Med. 210, 375–387 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Yao, C. et al. Prostaglandin E2 promotes Th1 differentiation via synergistic amplification of IL-12 signalling by cAMP and PI3-kinase. Nat. Commun. 4, 1685 (2013).

    PubMed  PubMed Central  Google Scholar 

  160. Mitroulis, I., Kourtzelis, I., Kambas, K., Chrysanthopoulou, A. & Ritis, K. Evidence for the involvement of mTOR inhibition and basal autophagy in familial Mediterranean fever phenotype. Hum. Immunol. 72, 135–138 (2011).

    CAS  PubMed  Google Scholar 

  161. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Amulic, B. & Hayes, G. Neutrophil extracellular traps. Curr. Biol. 21, R297–R298 (2011).

    CAS  PubMed  Google Scholar 

  163. Mitroulis, I. et al. Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout. PLoS ONE 6, e29318 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Mocarski, E. S., Kaiser, W. J., Livingston-Rosanoff, D., Upton, J. W. & Daley-Bauer, L. P. True grit: programmed necrosis in antiviral host defense, inflammation, and immunogenicity. J. Immunol. 192, 2019–2026 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Prince, L. R. et al. Staphylococcus aureus induces eosinophil cell death mediated by α-hemolysin. PLoS ONE 7, e31506 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Feoktistova, M. et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chan, F. K. Fueling the flames: mammalian programmed necrosis in inflammatory diseases. Cold Spring Harb. Perspect. Biol. 4, a008805 (2012).

    PubMed  PubMed Central  Google Scholar 

  169. Miles, K. et al. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of α-defensins. J. Immunol. 183, 2122–2132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Blume, K. E. et al. Cell surface externalization of annexin A1 as a failsafe mechanism preventing inflammatory responses during secondary necrosis. J. Immunol. 183, 8138–8147 (2009).

    CAS  PubMed  Google Scholar 

  171. Menzies, F. M., Moreau, K. & Rubinsztein, D. C. Protein misfolding disorders and macroautophagy. Curr. Opin. Cell Biol. 23, 190–197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Mihalache, C. C. et al. Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events. J. Immunol. 186, 6532–6542 (2011).

    CAS  PubMed  Google Scholar 

  173. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    CAS  PubMed  Google Scholar 

  174. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    CAS  PubMed  Google Scholar 

  175. Takao, K. & Miyakawa, T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 112, 1167–1172 (2015).

    CAS  PubMed  Google Scholar 

  176. Shay, T., Lederer, J. A. & Benoist, C. Genomic responses to inflammation in mouse models mimic humans: we concur, apples to oranges comparisons won't do. Proc. Natl Acad. Sci. USA 112, E346 (2015).

    CAS  PubMed  Google Scholar 

  177. Libby, P., Tabas, I., Fredman, G. & Fisher, E. A. Inflammation and its resolution as determinants of acute coronary syndromes. Circ. Res. 114, 1867–1879 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Nicholls, S. J. et al. Effect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 365, 2078–2087 (2011).

    CAS  PubMed  Google Scholar 

  179. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Drechsler, M., Megens, R. T., van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122, 1837–1845 (2010).

    CAS  PubMed  Google Scholar 

  181. Parathath, S. et al. Diabetes adversely affects macrophages during atherosclerotic plaque regression in mice. Diabetes 60, 1759–1769 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Day, R. M., Harbord, M., Forbes, A. & Segal, A. W. Cantharidin blisters: a technique for investigating leukocyte trafficking and cytokine production at sites of inflammation in humans. J. Immunol. Methods 257, 213–220 (2001).

    CAS  PubMed  Google Scholar 

  183. Evans, B. J., Haskard, D. O., Sempowksi, G. & Landis, R. C. Evolution of the macrophage CD163 phenotype and cytokine profiles in a human model of resolving inflammation. Int. J. Inflam 2013, 780502 (2013).

    PubMed  PubMed Central  Google Scholar 

  184. Jenner, W. et al. Characterisation of leukocytes in a human skin blister model of acute inflammation and resolution. PLoS ONE 9, e89375 (2014).

    PubMed  PubMed Central  Google Scholar 

  185. Jenner, W. J. & Gilroy, D. W. Assessment of leukocyte trafficking in humans using the cantharidin blister model. JRSM Cardiovasc. Dis. http://dx.doi.org/10.1258/cvd.2012.012009 (2012).

  186. Basran, A. et al. Roles of neutrophils in the regulation of the extent of human inflammation through delivery of IL-1 and clearance of chemokines. J. Leukoc. Biol. 93, 7–19 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Brittan, M. et al. A novel subpopulation of monocyte-like cells in the human lung after lipopolysaccharide inhalation. Eur. Respir. J. 40, 206–214 (2012).

    CAS  PubMed  Google Scholar 

  188. Vukmanovic-Stejic, M., Rustin, M. H., Nikolich-Zugich, J. & Akbar, A. N. Immune responses in the skin in old age. Curr. Opin. Immunol. 23, 525–531 (2011).

    CAS  PubMed  Google Scholar 

  189. High, K. P., Akbar, A. N. & Nikolich-Zugich, J. Translational research in immune senescence: assessing the relevance of current models. Semin. Immunol. 24, 373–382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Gilroy, D. W., Lawrence, T., Perretti, M. & Rossi, A. G. Inflammatory resolution: new opportunities for drug discovery. Nat. Rev. Drug Discov. 3, 401–416 (2004).

    CAS  PubMed  Google Scholar 

  191. Robertson, A. L. et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci. Transl. Med. 6, 225ra29 (2014).

    PubMed  PubMed Central  Google Scholar 

  192. Back, M. et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR review 7. Br. J. Pharmacol. 171, 3551–3574 (2014).

    PubMed  PubMed Central  Google Scholar 

  193. Machado, F. S. & Aliberti, J. Role of lipoxin in the modulation of immune response during infection. Int. Immunopharmacol. 8, 1316–1319 (2008).

    CAS  PubMed  Google Scholar 

  194. Romano, M. Lipoxin and aspirin-triggered lipoxins. ScientificWorldJournal 10, 1048–1064 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Romano, M., Recchia, I. & Recchiuti, A. Lipoxin receptors. ScientificWorldJournal 7, 1393–1412 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Gyurko, R. & Van Dyke, T. E. The role of polyunsaturated ω-3 fatty acid eicosapentaenoic acid-derived resolvin E1 (RvE1) in bone preservation. Crit. Rev. Immunol. 34, 347–357 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Hisada, T., Ishizuka, T., Aoki, H. & Mori, M. Resolvin E1 as a novel agent for the treatment of asthma. Expert Opin. Ther. Targets 13, 513–522 (2009).

    CAS  PubMed  Google Scholar 

  198. Seki, H., Tani, Y. & Arita, M. Omega-3 PUFA derived anti-inflammatory lipid mediator resolvin E1. Prostaglandins Other Lipid Mediat. 89, 126–130 (2009).

    CAS  PubMed  Google Scholar 

  199. Recchiuti, A. Resolvin D1 and its GPCRs in resolution circuits of inflammation. Prostaglandins Other Lipid Mediat. 107, 64–76 (2013).

    CAS  PubMed  Google Scholar 

  200. Chatterjee, A. et al. The pro-resolving lipid mediator maresin 1 (MaR1) attenuates inflammatory signaling pathways in vascular smooth muscle and endothelial cells. PLoS ONE 9, e113480 (2014).

    PubMed  PubMed Central  Google Scholar 

  201. Gong, J. et al. Maresin 1 prevents lipopolysaccharide-induced neutrophil survival and accelerates resolution of acute lung injury. Shock 44, 371–380 (2015).

    CAS  PubMed  Google Scholar 

  202. Sasaki, K., Urabe, D., Arai, H., Arita, M. & Inoue, M. Total synthesis and bioactivities of two proposed structures of maresin. Chem. Asian J. 6, 534–543 (2011).

    CAS  PubMed  Google Scholar 

  203. Wang, C. W. et al. Maresin 1 biosynthesis and pro-resolving anti-infective functions with human localized aggressive periodontitis leukocytes. Infect. Immun. http://dx.doi.org/10.1128/IAI.01131-15 (2015).

  204. Lagarde, M. et al. Docosahexaenoic acid, protectin synthesis: relevance against atherothrombogenesis. Proc. Nutr. Soc. 73, 186–189 (2014).

    CAS  PubMed  Google Scholar 

  205. Weylandt, K. H., Chiu, C. Y., Gomolka, B., Waechter, S. F. & Wiedenmann, B. Omega-3 fatty acids and their lipid mediators: towards an understanding of resolvin and protectin formation. Prostaglandins Other Lipid Mediat. 97, 73–82 (2012).

    CAS  PubMed  Google Scholar 

  206. Pettipher, R., Hansel, T. T. & Armer, R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat. Rev. Drug Discov. 6, 313–325 (2007).

    CAS  PubMed  Google Scholar 

  207. Uehara, Y. Prostaglandin D2. Nihon Rinsho 57 (Suppl.), 728–731 (in Japanese) (1999).

    PubMed  Google Scholar 

  208. Uchida, K. & Shibata, T. 15-deoxy-Δ12,14-prostaglandin J2: an electrophilic trigger of cellular responses. Chem. Res. Toxicol. 21, 138–144 (2008).

    PubMed  Google Scholar 

  209. Clay, C. E. et al. 15-deoxy-Δ12,14PGJ2 induces diverse biological responses via PPARγ activation in cancer cells. Prostaglandins Other Lipid Mediat. 62, 23–32 (2000).

    CAS  PubMed  Google Scholar 

  210. Graham, G. J. D6/ACKR2. Front. Immunol. 6, 280 (2015).

    PubMed  PubMed Central  Google Scholar 

  211. Graham, G. J. & Locati, M. Regulation of the immune and inflammatory responses by the 'atypical' chemokine receptor D6. J. Pathol. 229, 168–175 (2013).

    CAS  PubMed  Google Scholar 

  212. Chen, L., Lv, F. & Pei, L. Annexin 1: a glucocorticoid-inducible protein that modulates inflammatory pain. Eur. J. Pain 18, 338–347 (2014).

    CAS  PubMed  Google Scholar 

  213. Perretti, M. & D'Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rev. Immunol. 9, 62–70 (2009).

    CAS  PubMed  Google Scholar 

  214. Yazid, S., Norling, L. V. & Flower, R. J. Anti-inflammatory drugs, eicosanoids and the annexin A1/FPR2 anti-inflammatory system. Prostaglandins Other Lipid Mediat. 98, 94–100 (2012).

    CAS  PubMed  Google Scholar 

  215. Henderson, N. C. & Sethi, T. The regulation of inflammation by galectin-3. Immunol. Rev. 230, 160–171 (2009).

    CAS  PubMed  Google Scholar 

  216. Rabinovich, G. A. & Toscano, M. A. Turning 'sweet' on immunity: galectin–glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352 (2009).

    CAS  PubMed  Google Scholar 

  217. Elola, M. T., Chiesa, M. E., Alberti, A. F., Mordoh, J. & Fink, N. E. Galectin-1 receptors in different cell types. J. Biomed. Sci. 12, 13–29 (2005).

    CAS  PubMed  Google Scholar 

  218. Gavins, F. N., Leoni, G. & Getting, S. J. Annexin 1 and melanocortin peptide therapy for protection against ischaemic-reperfusion damage in the heart. ScientificWorldJournal 6, 1008–1023 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Perretti, M. Lipocortin 1 and chemokine modulation of granulocyte and monocyte accumulation in experimental inflammation. Gen. Pharmacol. 31, 545–552 (1998).

    CAS  PubMed  Google Scholar 

  220. Qin, C. et al. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol. Ther. 148, 47–65 (2015).

    CAS  PubMed  Google Scholar 

  221. Brzoska, T., Bohm, M., Lugering, A., Loser, K. & Luger, T. A. Terminal signal: anti-inflammatory effects of α-melanocyte-stimulating hormone related peptides beyond the pharmacophore. Adv. Exp. Med. Biol. 681, 107–116 (2010).

    CAS  PubMed  Google Scholar 

  222. D'Agostino, G. & Diano, S. Alpha-melanocyte stimulating hormone: production and degradation. J. Mol. Med. (Berl.) 88, 1195–1201 (2010).

    CAS  Google Scholar 

  223. Dores, R. M. Adrenocorticotropic hormone, melanocyte-stimulating hormone, and the melanocortin receptors: revisiting the work of Robert Schwyzer: a thirty-year retrospective. Ann. NY Acad. Sci. 1163, 93–100 (2009).

    CAS  PubMed  Google Scholar 

  224. Singh, M. & Mukhopadhyay, K. Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. Biomed. Res. Int. 2014, 874610 (2014).

    PubMed  PubMed Central  Google Scholar 

  225. Bondue, B., Wittamer, V. & Parmentier, M. Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev. 22, 331–338 (2011).

    CAS  PubMed  Google Scholar 

  226. Mariani, F. & Roncucci, L. Chemerin/chemR23 axis in inflammation onset and resolution. Inflamm. Res. 64, 85–95 (2015).

    CAS  PubMed  Google Scholar 

  227. Zabel, B. A. et al. Chemerin regulation and role in host defense. Am. J. Clin. Exp. Immunol. 3, 1–19 (2014).

    PubMed  PubMed Central  Google Scholar 

  228. Chung, H. T., Choi, B. M., Kwon, Y. G. & Kim, Y. M. Interactive relations between nitric oxide (NO) and carbon monoxide (CO): heme oxygenase-1/CO pathway is a key modulator in NO-mediated antiapoptosis and anti-inflammation. Methods Enzymol. 441, 329–338 (2008).

    CAS  PubMed  Google Scholar 

  229. Li, L., Hsu, A. & Moore, P. K. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation — a tale of three gases! Pharmacol. Ther. 123, 386–400 (2009).

    CAS  PubMed  Google Scholar 

  230. Ryter, S. W. & Choi, A. M. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl. Res. 167, 7–34 (2016).

    CAS  PubMed  Google Scholar 

  231. Fong, C. H. et al. An antiinflammatory role for IKKβ through the inhibition of “classical” macrophage activation. J. Exp. Med. 205, 1269–1276 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Liu, J. et al. PI3K is required for the physical interaction and functional inhibition of NF-κB by β-catenin in colorectal cancer cells. Biochem. Biophys. Res. Commun. 434, 760–766 (2013).

    CAS  PubMed  Google Scholar 

  233. Rossi, A. G. L13. Apoptosis, apoptotic cell clearance and resolution of inflammation. Presse Med. 42, 536–537 (2013).

    PubMed  Google Scholar 

  234. Geering, B., Gurzeler, U., Federzoni, E., Kaufmann, T. & Simon, H. U. A novel TNFR1-triggered apoptosis pathway mediated by class IA PI3Ks in neutrophils. Blood 117, 5953–5962 (2011).

    CAS  PubMed  Google Scholar 

  235. El Kebir, D., Gjorstrup, P. & Filep, J. G. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc. Natl Acad. Sci. USA 109, 14983–14988 (2012).

    CAS  PubMed  Google Scholar 

  236. Martin, M. C., Dransfield, I., Haslett, C. & Rossi, A. G. Cyclic AMP regulation of neutrophil apoptosis occurs via a novel protein kinase A-independent signaling pathway. J. Biol. Chem. 276, 45041–45050 (2001).

    CAS  PubMed  Google Scholar 

  237. Godson, C. et al. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 164, 1663–1667 (2000).

    CAS  PubMed  Google Scholar 

  238. Bystrom, J. et al. Resolution-phase macrophages possess a unique inflammatory and bactericidal phenotype that is controlled by cAMP. Blood 112, 4117–4127 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Sun, L. et al. Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-α mRNA. J. Biol. Chem. 282, 3766–3777 (2007).

    CAS  PubMed  Google Scholar 

  240. Fredman, G., Van Dyke, T. E. & Serhan, C. N. Resolvin E1 regulates adenosine diphosphate activation of human platelets. Arterioscler. Thromb. Vasc. Biol. 30, 2005–2013 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Rajakariar, R. et al. Nonresolving inflammation in gp91phox−/− mice, a model of human chronic granulomatous disease, has lower adenosine and cyclic adenosine 5′-monophosphate. J. Immunol. 182, 3262–3269 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Wellcome Trust and the Medical Research Council for the financial support that has enabled the research that has contributed to this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek W. Gilroy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Eicosanoids

Twenty-carbon structures that are derived from arachidonic acid. Examples include the prostaglandins and the leukotrienes.

Granulocytes

White blood cells that are characterized by granules in their cytoplasm. These include polymorphonuclear cells, eosinophils, basophils and mast cells.

Efferocytosis

The removal of effete, mainly apoptotic, cells by professional phagocytes, especially macrophages.

Zymosan

A ligand found on the surface of fungi. It binds to Toll-like receptor 2 (TLR2) and dectin receptors.

Adenine- or uridine-rich elements

(AREs). 3′-untranslated regions of mRNA that recruit destabilizing factors and translational silencers.

MicroRNAs

(miRNAs). Small non-coding RNA molecules, containing about 21–22 nucleotides, that function by base-pairing with complementary sequences within mRNA molecules.

Exudates

Mixtures of cells and fluid that accumulate outside blood vessels during inflammation.

Non-phlogistic

In a non-inflammatory manner.

Co-inhibitory molecules

Molecules belonging to the immunoglobulin superfamily or the tumour necrosis factor receptor superfamily that inhibit T cell receptor- mediated responses.

Polysensitization

A phenomenon in which sensitization to one allergen favours sensitization to other environmental allergens.

Macrophage plasticity

The ability of macrophages to alter or adapt their biological function commensurate with the inflammatory environment they inhabit.

Stress granules

Sites where untranslated mRNAs accumulate in cells that have been subjected to adverse environmental conditions.

Acantholysis

Pathological separation of the epidermis from the dermis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fullerton, J., Gilroy, D. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15, 551–567 (2016). https://doi.org/10.1038/nrd.2016.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing